

	4	Course Code: SOE O P JINDAL UNIVERSITY		AND A	
ਚ	III B. Tech. VI Semester Backlog Examinations				OPJU
		SED II	9888410	REVISION S SN. Ma	HILL THEISOURGE STREET
		(Offered to Civil Engineering)	Lyall	la est	
7	Time:	3 Hrs.	ax. M	larks: 10	00
		Solve all questions from section A (Solve any two from each unit)			
		(Solve any two from each unit)	M	СО	KL
Sull			Salle		
		Section-A(Solve all questions)			
H-0-1-	a.	What is the criterion to decide spacing section in built up columns?	2	CO4	KL
	b.	Explain effective length of compression member	2	CO4	KL
	c.	What are laterally supported and laterally unsupported beams.	2	CO5	KL
	d.	What do you mean by net area and net effective area of tension member	2	C03	KL
	e.	What you mean by built up column? What are the cross sections	2	CO4	KL
Q.1	f.	List different types of structural sections	2	CO1	KL
	g.	Define: i)Nominal diameter ii) Gross diameter iii) Pitch	2	CO1	KL
	h.	Draw force transmission in HSFG Bolt.	2	CO2	KL
	i.	What do you mean by bolt value	2	CO2	KL
	j.	Define plastic hinge	2	CO1	KL
		Section-B: (Solve any two from each unit)			
		Unit-I	12 (5,6)		1
		Compute plastic moment for the portal frame shown in figure	A CONTRACT		
		8 kN/m 124 kN			
Q.2	a.	*********	8	CO1	KL
V		A B C			
		6 m 3 m 2 m			
	b.	Calculate shape factor for tringle section (dimensions b,h)	8	CO1	KL
	c.	Compute collapse load for the Propped cantilever beam point load W kN at a distance	8	CO1	KL
	0.	b from propped end.	0	COI	IXL.

		Unit-II		Yes	
	a.	Design a lap joint between two plate 12 mm and 20 mm. to transmit a factored load of 80 KN using M 16 Bolts of grade 4.6 and grade 410 plates.	8	CO2	KL2
Q.3	b.	Calculate strength(KN) based on block shear (for case rupture in shear and yieldig in tension) when Avg=2450 sq.mm Avn= 1823 sq.mm Atg=618 sq.mm Atn=325 sq.mm. assume yield stress of steel=250 N/sq.mm and Ultimate stress of steel=410 N/sq.mm	8	CO2	KL2
	c	Calculate strength(KN) based on block shear (for case rupture in shear and yieldig in tension) when Avg=2000 sq.mm Avn= 1800 sq.mm Atg=800 sq.mm Atn=250 sq.mm. assume yield stress of steel=250 N/sq.mm and Ultimate stress of steel=410 N/sq.mm	8	CO2	KL2
	1	Unit-III			
	a.	Select suitable angle section to carry a factored tensile force of 300 kN. Assume single row of M20 bolts and assuming design strength as f_y 250 N/mm ²	8	CO3	KL2
Q.4	b.	Determine the design tensile strength of plate (160 mm x 8 mm) connected to 10mm thick gusset using 16mm bolts as shown in figure if the yield and the ultimate stress of the steel used are 250 MPa and 410 MPa, respectively.	8	CO3	KL2
	c	Determine the design tensile strength of plate (200 mm x 8 mm) connected to 10 mm thick gusset using 20 mm bolts as shown in figure if the yield and the ultimate stress of the steel used are 250 MPa and 410 MPa, respectively. Plate 8-mm thick Gusset 10-mm thick 40, 50,50, 40	8	CO3	KL2

7		Unit-IV			
Q.5	a.	Design laced column 10m long to carry a factored axial load of 1100 kN. Column is hinged at both ends. Provide single lacing system with bolted connection. Design the column with two channels back to back.	8	CO4	KL2
	b.	Design base plate for an ISMB 500 column to carry a factored load of 1500 kN. Assume Fe 410 grade and M25 Concrete.	8	CO4	KL2
	c.	Calculate compressive resistance of ISA150 x 150 x 16 mm angle assuming that the angle is loaded through only one leg, when it is connected by two bolts at the ends.	8	CO4	KL2
		UNIT-V			
	a.	Calculate deflection of ISMB 300 steel beam 4m long subjected to imposed load udl of 20 KN/m.	8	CO5	KL1
Q.6	b.	Design a simply supported beam of span 3m carrying a reinforced concrete floor capable of providing lateral restraint to the top compression flange. The uniformely distributed load is made up of 15 kN/m imposed load and 18 kN/m dead load. Assume fy 250 steel. $E=2 \times 10^5 \text{ N/mm}^2$	8	CO5	KL2
	c.	Calculate deflection of ISMB 400 steel beam 4.5m long subjected to imposed load udi of 25 KN/m.	8	CO5	KL1

13/51/22

Course Code: SOE-B-CE602

O P JINDAL UNIVERSITY

B. Tech. VI Semester Backlog Examinations Geotechnical Engineering II

OPJU

Max. Marks: 100

(Offered to Civil Engineering Department)

Time: 3 Hrs.

Answer any one question from each unit All questions carry equal marks

			M	CO	KL
		Section-A		Visuality in	
1	a.	What is grip length in well foundation?	2	5	1,2,
1	b.	Differentiate shallow and deep foundation.	2	3	1,2
	c.	Write difference between foundation and footing.	2	3	1,2
	d.	What is negative skin friction?	2	4	1,2,
	e.	Write Terzaghi's bearing capacity theory equation.	2	3	1,3,
	f.	Write two basic criteria for design of the foundation.	2	3	2,3,
	g.	What is sheet pile wall?	2	4	1,2
	h.	Write difference between active and passive earth pressure?	2	2	1,2,
	i.	What are the problems associated with expansive soils?	2	5	1,2
	j.	Define earth slope and causes of its failure.	2	1	1,4
		Section-B:		April plants	
		Unit-I			
	a.	Describe different types of slope failure with appropriate diagram.	8	1	2,3,
2	b.	What are assumptions are generally made in the analysis of stability of slope?	8	1	2,4
		OR1			
	a.	Write methods to improve the stability of slope.	8	1	2,3,
3		(i) What is a slope and its necessity in construction?			
	b.	(ii) Write difference between finite and infinite slopes.	8	1	2,3,
		Unit-II			

6	a.	Describe different types of shallow foundation with appropriate diagram.	8	3	1,2
0	b.	Describe different modes of shear failure with appropriate diagram.	8	3	1,2
+)		OR		Mary a	
7	a.	Determine the allowable gross load and the net allowable load for a square footing of 2m side and with a depth of a foundation of 1.0m.Use Terzaghi's theory and assume local shear failure. Take a factor of safety of 3.0.The soil at the site has $\Upsilon=18kN/m^3$, C'=15kN/m² and Φ '=25°. (Nc =14.8, Nq=5.6, Nr=3.2).	8	3	3,4,5
	b.	(i)Write the assumptions of Terzaghi's bearing capacity theory. (ii)How water table influences the bearing capacity of the foundation.	8	3	1,2,3
		Unit-IV		- 7	
0	a.	A concrete pile, 30cm diameter, is driven into medium dense send $(\Phi=35^0,\Upsilon=21\text{kN/m}^2,K=1.0,\tan\ 6=0.70)$ for a depth of 8m.Estimate the safe load ,taking a factor of safety of 2.50.Given D _e /B=12.0.N _q =60.	8	4	3,4,5
8	b.	How the load carrying capacity of piles are estimated?	8	4	2,3,4
		OR			
9	a.	(i) How could you measures group efficiency of pile?(ii) What is under reamed pile? What is its primary objectives?	8	4	2,3,4
	b.	Describe various types of pile foundation.	8	4	1,2,3
		UNIT-V			
	a.	Write components of a well foundation with appropriate diagram.	8	5	1,2
10	b.	In order to design a stable foundation on expansive soil, What measures should be taken?	8	5	1,2,3
		OR			1
11	a.	What are the measures taken for rectification of tilts and shifts of well foundation?	8	5	2,3,4
	b.	Write construction stages of well foundation.	8	5	2,3

Course Code: SOE-B-CE602

O P JINDAL UNIVERSITY

B. Tech. VI Semester Backlog Examinations Geotechnical Engineering II

OPJU

UNAPBET EL SIDEL TUTROLOGY
(NO MASALBERT)

Max. Marks: 100

(Offered to Civil Engineering Department)

Time: 3 Hrs.

Answer any one question from each unit All questions carry equal marks

			M	CO	KL
tale hard		Section-A			
1	a.	What is grip length in well foundation?	2	5	1,2,
1	b.	Differentiate shallow and deep foundation.	2	3	1,2
	c.	Write difference between foundation and footing.	2	3	1,2
	d.	What is negative skin friction?	2	4	1,2,
	e.	Write Terzaghi's bearing capacity theory equation.	2	3	1,3,
	f.	Write two basic criteria for design of the foundation.	2	3	2,3,
	g.	What is sheet pile wall?	2	4	1,2
	h.	Write difference between active and passive earth pressure?	2	2	1,2,
	i.	What are the problems associated with expansive soils?	2	5	1,2
	j.	Define earth slope and causes of its failure.	2	1	1,4
		Section-B:			
		Unit-I			
	a.	Describe different types of slope failure with appropriate diagram.	8	1	2,3
2	b.	What are assumptions are generally made in the analysis of stability of slope?	8	1	2,4
		OR1			
	a.	Write methods to improve the stability of slope.	8	1	2,3,
3		(i) What is a slope and its necessity in construction?			
	b.	(ii) Write difference between finite and infinite slopes.	8	1	2,3
		Unit-II			

The Application for the second

6	a.	Describe different types of shallow foundation with appropriate diagram.	8	3	1,2
U	b.	Describe different modes of shear failure with appropriate diagram.	8	3	1,2
17)		OR			,
7	a.	Determine the allowable gross load and the net allowable load for a square footing of 2m side and with a depth of a foundation of 1.0m.Use Terzaghi's theory and assume local shear failure. Take a factor of safety of 3.0.The soil at the site has $\Upsilon=18kN/m^3$, $C'=15kN/m^2$ and $\Phi'=25^0$. (Nc =14.8, Nq=5.6, Ny=3.2).	8	3	3,4,5
	b.	(i)Write the assumptions of Terzaghi's bearing capacity theory. (ii)How water table influences the bearing capacity of the foundation.	8	3	1,2,3
		Unit-IV			
8	a.	A concrete pile, 30cm diameter, is driven into medium dense send $(\Phi=35^{\circ},\Upsilon=21\text{kN/m}^{2},K=1.0,\tan \ \sigma=0.70)$ for a depth of 8m.Estimate the safe load ,taking a factor of safety of 2.50.Given D _c /B=12.0.N _q =60.	8	4	3,4,5
0	b.	How the load carrying capacity of piles are estimated?	8	4	2,3,4
		OR			
9	a.	(i) How could you measures group efficiency of pile?(ii) What is under reamed pile? What is its primary objectives?	8	4	2,3,4
	b.	Describe various types of pile foundation.	8	4	1,2,3
,		UNIT-V			
	a.	Write components of a well foundation with appropriate diagram.	8	5	1,2
10	b.	In order to design a stable foundation on expansive soil, What measures should be taken?	8	5	1,2,3
		OR			
11	a.	What are the measures taken for rectification of tilts and shifts of well foundation?	8	5	2,3,4
	b.	Write construction stages of well foundation.	8	5	2,3

Best of luck