| | | O D HANDAL HANNAED CHENA | Code | : 01P | <u> </u> | |---------|---------------|--|----------|---------------|-----------------| | | - | O P JINDAL UNIVERSITY M.Tech-II Semester Regular Examinations Energy Management and Audit | <u> </u> | United States | OPJU | | | | (Offered to Mechanical Engineering) | C TH | ASOM | ENGINEER | | rr rive | Time: | | ax. Ma | arks: 1 | 00 | | | adamente apri | Answer any one question from each unit | 112 | TIO. I | 00 | | | | All questions carry equal marks | Constant | | | | | | | M | CO | KI | | | | Unit-I (20 marks) | | | | | | a. | What is energy management? Write their objectives and explain it. | 10 | 1 | 1 | | 1 | b. | Discuss the method of pumped hydro energy storage system (PHES) with a neat sketch? | 10 | 1 | 2 | | | | OR | | 17 18 | 4 | | 2 | a. | How does a Compressed Air Energy Storage (CAES) system operate? Show the main components in a neat sketch of the system. | 10 | 1 | 2,3 | | | b. | What is the Bureau of Energy Efficiency (BEE)? Define the important point of BEE and its features. | 10 | 1 | 1 | | | | Unit-II (20 marks) | 1 | | | | • | a. | Prepare an energy audit report of an energy intensive firm. | 10 | 2 | 3 | | 3 | b. | What are the various steps in the implementation of energy management in an organization? | 10 | 2 | 1,2 | | | | OR | | 7 47 | | | 4 | a. | Write down the steps involved in 'Energy management Strategy'? | 10 | 2 | 2 | | | b. | What are the various levels of mass and energy balances? Explain it. | 10 | 2 | 2,3 | | | | Unit-III (20 marks) | | | | | 5 | a. | Write the various steps of energy action planning in detail. | 10 | 3 | 1,2 | | 3 | b. | What are the roles and responsibilities of an energy manager? Explain it in detail. | 10 | 3 | 3 | | | _ | OR | | | | | 6 | a. | What is force field analysis? Prepare a force field analysis for Indian energy management programme. | 10 | 3 | 1,2 | | J | b. | Why are managerial skills as important as technical skills in energy management? | 10 | 3 | 2 | | | | Unit-IV(20 marks) | | | | | _ | a. | List down the various guidelines required for material and energy balance. | 10 | 4 | 3 | | 7 | b. | What is energy management information system (EMIS)? Explain the various phases of EMIS. | 10 | 4 | 1,2 | | | | OR | | | 7.00 | | | a. | Draw a typical input output diagram for a process and indicate the various energy inputs | 10 | 4 | 3 | |----------|----|---|---------|---|-----| | 8 | b. | I. What is a simple Payback period? II. List out four non-contact type measuring instruments. | 10 | 4 | 1,2 | | | | UNIT-V (20 marks) | V 3 34 | 1 | | | 9 | a. | Define the following terms: a. Heat balance b. First law of efficiency c. Heat exchanger | 10 | 5 | 1 | | | b. | d. Cogeneration Write shorts notes on- I. Heat recovery system II. Sources of waste heat | 10 | 5 | 1 | | A signal | | OR and OR and the same | eration | | T | | 10 | a. | Write shorts notes on- I. Guidelines to identify waste heat II. Grading of waste heat | 10 | 5 | 1 | | | b. | How to design heat exchangers by L.M.T.D. methods. | 10 | 5 | 3 | CO2 10 | | | Course Co | de: So | OE-M-P | PE20 | |------|--------------|--|--------------------|------------|------------------------------| | | | O P JINDAL UNIVERSITY | | SU P | OPIL | | - | | M. Tech. II Semester Backlog Examinations | | | Orju | | | | COMPUTATIONAL FLUID DYNAMICS | | | STEEL TECHNOLOG
AXAGEMENT | | 1 49 | T | (Offered to Mechanical Engineering) ime: 3 Hrs. | | Pres Greet | | | | | Answer any one question from each unit | lax. N | Marks: 1 | 00 | | | America. | All questions carry equal marks | nerena
National | | | | | | And the second of o | M | CO | KI | | | | Section-A | 1 -1- | 1 00 | | | 1 | a. | What is CFD? State its objective. | 2 | COL | 1 | | | b. | How is CFD being used as a research tool, a design tool, and an educational | 2 | CO1 | 1 | | | the state of | tool in academic fields, such as Thermal-Fluids? | 2 | CO1 | 1 | | | c. | Explain the features of TDMA method. | A 50 | 94230 | | | - | d. | | 2 | CO2 | 1 | | | <u> </u> | What are the key iterative methods available to solve the system of nonlinear equations? | 2 | CO2 | 1 | | | e. | Define the following term: truncation error and order of accuracy. | 2 | CO3 | 1 | | | f. | What are the differences between explicit and implicit methods? | 2 | CO3 | 1 | | | g. | Define the term: stability and convergence. | 2 | CO4 | $\frac{1}{1}$ | | | h. | What are the advantages of FVM over FDM? Mention the key steps involved in FVM. | 2 | CO4 | 1 | | | i. | What are the advantages and disadvantages of FEM? | 2 | CO5 | 1 | | | j. | What is the importance of using weighted residual in FEM? | 2 | CO5 | 1 | | | | Section-B: | | 1 003 | 1 | | | | 사용사용이 있는 아이들이 아는 아는 아들이 아니라 아들이 되었다. 아이들이 아이를 생각하고 있다면 하루스 사용하고 있다면 아니라 아들이 되었다. | | | | | 1 | | Explain the significant CR 11 F | 100 | an areas | | | | a. | Explain the significance of Reynolds Transport theorem; using the same derive | 6 | CO1 | 2 | | - | 1 | the Continuity equation. | U | COI | 2 | | _ | b. | Write a short note on commercial CFD packages. | 10 | CO1 | 3 | | | | OR | | | | | | a. | What are the key advantages and disadvantages of CFD technique? | _ | GOL | | | 1 | b. | Derive the Navier-Stokes equation. | 6 | CO1 | 2 | | | 0. | | 10 | CO1 | 3 | | | | Unit-II | | 1.00 | | | | a. | State the condition for the convergence of Gauss Seidel iteration method for solving a system of linear equation. | 6 | CO2 | 2 | | | b. | With the help of a block diagram explain the complete computational solution | 10 | das | | | | | procedure using CFD technique. | 10 | CO2 | 3 | | | | OR | A VI | | | | | a. | Explain the features of TDMA method. | 6 | COST | _ | | | 200 | Use the Cause Jordan tashairman 1 1 0 11 | 6 | CO2 | 2 | Use the Gauss-Jordan technique to solve the following system: | | | 2 0.1 0.2 7.05 | | 1 | | |---|------|--|----------------|----------------|---| | | 1.00 | $3x_1 - 0.1x_2 - 0.2x_3 = 7.85$ | | | | | | | $0.1x_1 + 7x_2 - 0.3x_3 = -19.3$ | | | | | | | $0.3x_1 - 0.2x_2 + 10x_3 = 71.4$ | and the second | and the second | | | | _ | Unit-III | | | | | | a. | Which of the following: forward difference, backward difference, and central difference is more accurate and why? | 6 | CO3 | 2 | | 6 | b. | Derive a 3-point backward difference formula on uniform grid, using general procedure, for a first order derivative $\left(\frac{\partial f}{\partial x}\right) = \frac{3f_i - 4f_{i-1} + f_{i-2}}{2\Delta x^1} + TE \approx 0(\Delta x^2)$ | 10 | CO3 | 3 | | | | lacopterados do dores do de OR a lacos de mos que en lacos de laco | K (| O in two | | | | a. | Explain the UPWIND difference scheme used in FDM. Explain why it is important in case of strong convective flows? | 6 | CO3 | 2 | | 7 | b. | Derive the expressions for explicit FTCS, CTCS for a parabolic PDE. Also discuss their stability and consistency. $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$ | 10 | CO3 | 3 | | - | | Unit-IV | | 1 7 15 7 7 | | | 8 | a. | Write down the Mid-point rule and Trapezoidal rule, schemes used for approximation of surface integrals in Finite volume method. | 6 | CO4 | 2 | | | b. | Explain SIMPLE Algorithm in detail. | 10 | CO4 | 3 | | | | OR | | | | | | a. | Explain finite volume method for 2-D unsteady state diffusion problem, with no volumetric heat generation. | 6 | CO4 | 2 | | 9 | b. | Explain the implicit methods - Crank-Nicolson for solving the given parabolic PDE. $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$ | 10 | CO4 | 3 | | | | UNIT-V | | | | | 0 | a. | Explain the advantages and disadvantages of using FEM over FDM. | 6 | CO5 | 2 | | | b. | Illustrate finite element formulation for heat conduction analysis. | 10 | CO5 | 3 | | | | OR | | | | | 1 | a. | Why are polynomial types of interpolation function preferred over trigonometric function? | 6 | CO5 | 2 | | 1 | b. | What is meant by discretization of a flow domain? Discuss the various aspects to be considered while discretizing a flow domain for finite element analysis. | 10 | CO5 | 3 | ## OP JINDAL UNIVERSITY, RAIGARH (C.G.) ## **END SEMESTER EXAMINATION, JAN-2023** Course: M Tech Hrs Time: 03 Semester:2nd Branch : Mechanical (PPEEM) Max. Marks: 100 Subject Code: SOE-M-PPE203 Subject: Design of Heat Exchangers Note: Section A: All Questions are compulsory. [10 x 02 marks] Section B : Answer any 8 questions. [08 x 05 marks] Section C : Answer any 5 questions [05 x 08 marks] HMT Data book is allowed | Q. No. | Section [A] | СО | |--------|---|----| | Q1 a) | What is convective boiling | 1 | | Q1 b) | What is film condensation. | 2 | | Q1 c) | What is difference between recuperation and Regeneration in heat exchanger. | 2 | | Q1 d) | What is projected length in plate heat exchanger | 1 | | Q1 e) | Write the general equation of fins | 2 | | Q1 f) | Draw a cooling tower and label the different parts of it. | 5 | | Q1 g) | Write different types of plate heat exchanger | 4 | | Q1 h) | What is a fired process heater | 3 | | Q1 i) | What is DBT & WBT. | 1 | | Q1 j) | What do you mean by the efficiency of cooling tower | 4 | | Q. No. | Section [B] | СО | |--------|---|----| | Q2 a) | Write a short note on temperature distribution on a triangular profile fins. | 1 | | Q2 b) | What do you mean by plate heat exchangers | 1 | | Q2 c) | What do you mean by the condition of long and short fin. | 3 | | Q2 d) | Write any two performance parameters of cooling towers. | 4 | | Q2 e) | Give a suitable classification for the heat exchanger. | 3 | | Q2 f) | Write any 5 steps to be followed for the design of reheater furnace | 1 | | Q2 g) | What are different types of cooling towers | 5 | | Q2 h) | Give a suitable classification of fins | 4 | | Q2 i) | Write a short note on any one type of fouling. | 3 | | Q2 j) | Write the different inputs for the design of the furnace and write any two steps. | 2 | | Q. No. | Section [C] | СО | |--------|---|----| | Q3 a) | Write a short note on parallel and counter flow HX. | 2 | | Q3 b) | Longitudinal fins of triangular profiles are exposed to ambient temperature at 20°C with a heat transfer coefficient 40 W/m²K. The base temperature is 90°C and the thermal conductivity of fin is 30 W/mK. The fin length is 10 cm and thickness at the base is 0.8 cm. Determine the temperature at the tip of the fin and heat transfer from the fin | 4 | | Q3 c) | A cylindrical furnace whose height and diameter are 5 m contains combustion gases at 1200 K and total pressure of 1 atm. The composition of the combustion gases is determined by volumetric analysis to be 80% N ₂ , 8% H ₂ O, 7% O2 and 5% of CO ₂ . Determine the effective emissivity of combustion | 3 | | | gases. | Charles of the | | And the second of the second | | |-------|--|---|--|--|---| | Q3 d) | Write a short note on Rota | ry Regenerate | or | | 2 | | Q3 e) | exchanger. | | | tion for a parallel flow heat | 4 | | Q3 f) | Cold water will be heated rate of 140 kg/s enters the be heated to 42°C. The water and leaving at 45°C. The part of o | e gasketed- pla
ate water has | ate heat exch
the same flo | nanger at 22°C and it will
w rate entering at 65°C | 5 | | | Items | Hot Fluid | Eddin Samerara | Cold Fluid | | | | Fluids | Wastewate | r | Cooling water | | | | Total fouling resistance | 0.00005 | Carried Part Section 1 | 0 | | | | Specific heat (J/kgK) | 4183 | The same of sa | 4178 | | | | Dynamic Viscosity | 5.09×10⁴ | | 7.66×10⁴ | | | | Thermal Conductivity | 0.645 | and the second | 0.617 | | | | Density | | | 995 | | | | Prandit Number | 3.31 | | 5.19 | | | | Plate thickness (mm) | Angelie - Eller | 0.6
45 | | | | | Chevron angle | 100000000000000000000000000000000000000 | 45 | production of the second control seco | | | | Total number of plates | | 105 | formulas and property well and the | | | | Number of Passes | Charles and | One pas | | | | | Overall heat transfer co
(Clean/fouled) | pefficient | 8000/450 | | | | | Total effective area (m2 | 2) | 110 | 7.424 \$ 7.704 | | | | Port Diameter (mm) | | 200 | the said and on the said and | | | | Compressed pack lem | gth | 0.38 | | | | | Vertical Port distance | | 1.55 | | | | | Horizontal port distance | | 0.43 | | | | | Effective channel widtl | | 0.63 | | | | | Thermal conductivity of plate material 17.5 | | | | | | | a) Determine the total | I amount of he | eat transfer | | | | Q3 g) | With reference to above of channels per pass | question - Obt | ain enlargen | nent factor & number of | 5 | | | CHANNELS DEL DASS | | | | | **** | | | Course Code: SOE-N | M-PP | E202 | | |---------|--------|--|---------|-------|-------| | | | O P JINDAL UNIVERSITY M.Tech. 2 nd Semester Backlog Examinations Advanced Steam and Gas Turbine Engineering | | R 21 | | | | | (Offered to ME, PPEEM) | | | 11 | | Tin | ie: 3 | - Carlot Control of the t | Max. | Marks | : 100 | | | | Answer any one question from each unit | 1200121 | 71241 | . 100 | | | | All questions carry equal marks | | | | | | | | M | CO | KL | | | T_ | Section-A | | | | | | a. | List the name of cycle on which gas and steam turbine power plant operates. | 2 | 1 | 1 | | | b. | Classify the steam turbine on the basis of various aspects of steam turbine. | 2 | 1 | 2 | | | c. | Compare the impulse and reaction turbine. | 2 | 2 | 2 | | | d. | Show the velocity diagram of blade for Parson's turbine. | 2 | 2 | 2 | | 1 | e. | What is the purpose of maintenance of steam turbine? | 2 | 3 | 1 | | 1 | f. | List the major sequences of steam turbine operation. | 2 | 3 | 1 | | | g. | Define the combustion chamber with the classification. | 2 | 4 | 1 | | | h. | List the 2 names of materials used for gas turbine blade manufacturing. | 2 | 4 | 1 | | | i. | List the name of starters used in gas turbines. | 2 | 5 | 1 | | | j. | What is gas turbine controls? Write the name of types of controls. | 2 | 5 | 1 | | | | Section-B: Unit-I | | | | | l publi | a. | Define degree of reaction and demonstrate the mathematical equation. | 8 | 1 | 1 | | | a and | In a De-Laval turbine steam issues from the nozzle with a velocity of 1200 m/s. | | | | | | a fine | The nozzle angle is 20°, the mean blade velocity is 400 m/s, and the inlet and | | | | | 2 | | outlet angles of blades are equal. The mass of steam flowing through the | | | | | | b. | turbine per hour is 1000 kg & the blade velocity coefficient = 0.8. Calculate: (i) | 8 | 1 | 3 | | | | Blade angles. (ii) Relative velocity of steam entering the blades. (iii) Tangential | | | | | | | force on the blades. | | | | | | | OR | | | | | 3 | a. | List the name of major components of steam cycle with their functions. | 8 | 1 | 1 | | | b. | Explain the principle elements of steam turbine. | 8 | 1 | 2 | | | | Unit-II | | | | | | a. | Explain Steam Turbine Governing with its different types in detail. | 8 | 2 | 2 | | | | A certain stage of a Parson's turbine consists of one row of fixed blades and | | | | | | | one row of moving blades. The details of the turbine are as below: The mean | | | | | 4 | | diameter of the blades = 68 cm R.P.M. of the turbine = 3000. The mass of | | | | | 7 | b. | steam passing per sec = 13.5 kg, Steam velocity at exit from fixed blades = | 8 | 2 | 3 | | | | 143.7 m/s. The blade outlet angle = 20o. Calculate the power developed in the | | | | | | | stage and gross efficiency, assuming carry over coefficient as 0. 74 and the | | | | | | | efficiency of conversion of heat energy into kinetic energy in the blade channel | | | | | | | OR | | | | |-----|------------|--|-----------------|---------|---------------| | 5 | a. | Explain Impulse Turbine with velocity pressure verice: | | | | | | b. | Explain the working of throttle governing with neat sketch. | 8 | 2 | | | 2 / | - | TT . TT | 8 | 2 | | | 6 | a. | Define the steam turbine auxiliary systems and write the | | LENEY F | | | | b. | Explain the steam turbine maintenance and write their names. | 8 | 3 | | | | The second | | 8 | 3 | | | 7 | a. | Explain turbine protective devices of steam turbine auxiliary systems. | 11.00 - 201-129 | 14.74. | | | / | b. | Explain in detail about steam turbine operation. | 8 | 3 | | | | | | 8 | 3 | | | | a. | Why the gos trubing 11 1 | 10 | 1 3 | | | 8 | b. | Why the gas turbine blades require cooling? List the various cooling schemes. Explain the combustion process with about 1 decided and 1 decided and 1 decided and 2 decid | 8 | 1 | T- | | - | 0. | Explain the combustion process with chemical reaction involved. | - | 4 | - | | | | OD | 8 | 4 | 1 | | | a. | Classify the combustion chamber and explain the various factors affecting | | | | |) | | | 8 | 4 | 1 2 | | | b. | Show the velocity diagram for gas Turbine blade and daring the | | | 2 | | | 0. | the work done. | 8 | 4 | 1 | | | | UNIT-V | 0 | 4 | 1 | |) | a. | Define the ignition system. List the types of ignition systems of gas turbine. Explain the lubrication systems of the system of the systems of the system o | 37.72.2 | | | | , | b. | Explain the lubrication systems of assistant line. | 8 | 5 | 1 | | | | Explain the lubrication systems of gas turbine power plant with neat sketch. | 8 | 5 | 2 | | | | Explain the gas turbine starting system. | | | | | | b. | Explain the operation of the starting system. | 8 | 5 | 2 | | | 0. | Explain the operation, maintenance and troubleshooting of gas turbine systems. | 8 | 5 | $\frac{2}{2}$ | Course Code: SOE-M-PPE201 ## O P JINDAL UNIVERSITY M.Tech. II Semester Backlog Examinations POWER PLANT INSTRUMENTATION & CONTROL ENGINEERING | | 1 me | 3 Hrs. | ax. M | arks: 1 | 00 | |-----|------|--|-------|---------|---------------| | | | Answer any one question from each unit All questions carry equal marks | | | | | | | An questions carry equal marks | M | CO | IZI | | | | Section A | IVI | CO | KI | | | a. | Section-A a. What is eddy current damping | | | 4 | | 1 | b. | Give the classification of pressure measuring instruments | 2 | 2 | 1 | | | c. | What is the environmental factors on the desire C | 2 | 1 | 1 | | | d. | What is the environmental factors on the design of measuring instruments? | 2 | 1 | 1 | | | | What is transducer? Explain its classification | 2 | 3 | 1 | | 4 | f. | Differentiate atmospheric, absolute and gauge pressures | 2 | 3 | 2 | | 4 | | Give the classification of control systems | 2 | 4 | 2 | | | g. | What do you mean by transfer function? | 2 | . 4 | 1 | | | h. | Define poles, zeros, type and order of a control system, with an example | 2 | 4 | 2 | | | i. | What do you mean by steady state error? Explain | 2 | 4 | 2 | | 5-4 | j. | What are transient and steady state response of a control system? | 2 | 5 | 4 | | | | Section-B: | | | | | | | Unit-I | | | | | _ | a. | Explain different types of errors of an instrument. | 8 | 1 | 3 | | 2 | b. | Define accuracy, precision, threshold and resolution | 8 | 1 | $\frac{3}{1}$ | | | | OR leaders and a second control of the t | 0 | 1 1 | 1 | | - | T - | | 17.5 | | | | 3 | a. | Differentiate primary, secondary and tertiary types of measurements. | 4 | 1 | 2 | | | b. | Explain hysteresis in measurement systems | 4 | 1 | 2 | | | c. | Give the steady state errors to a various standard inputs for type 2 system | 8 | 1 | 3 | | | | Unit-II | | | | | 4 | a. | Explain the construction and working of PMMC type instruments | 8 | 2 | 2 | | | b. | Draw the circuit diagram of a Wheatstone bridge and derive the condition for balance | 8 | 2 | 4 | | | T | Eveloin alora Continue Continue | | and the | | | _ | a. | Explain classification of resistances | 8 | 2 | 2 | | 5 | b. | Draw the circuit of a Kelvin's double bridge used for measurement of low resistances. Derive the condition for balance | 8 | 2 | 4 | | | | Unit-III | | | | | | | What is thermocouple? What are the different types of thermocouples? Explain the | | T | | | | a. | characteristics of thermocouples? | 8 | 3 | 2 | | 5 | b. | Explain the construction and working of a Bourden tube pressure gauge with a neat sketch. | 8 | 3 | 3 | | | | OR | | | | | 7 | a. | Explain the working principle of piezo-electric transducer. What are its advantages and limitations? | 8 | 3 | 3 | |----|----|--|--------|------------|---------------| | | b. | State the working principle of dead weight gauge tester | 8 | 3 | 3 | | | | Unit-IV | PE 94. | a year | | | 0 | a. | Compare open Loop and closed loop control system. Give examples | 8 | 4 | 4 | | 8 | b. | Discuss various test signals used for time domain analysis | 8 | 4 | 4 | | | | OR | - | | 400 | | | a. | For a unity feedback control system having open loop transfer function as $\frac{20(s+2)}{s^2(s+1)(s+5)}$, determine static error coefficients and steady state error for input $1+3t+\frac{t^2}{2}$ | 8 | 4 | 5 | | 9 | b. | Find the overall transfer function for the following block diagram $ \begin{array}{c} R(s) \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$ | 8 | 4 | 5 | | | | UNIT-V | | | | | 10 | a. | A unity feedback control system is characterized by the following open loop transfer function $G(s) = \frac{4s+1}{s(s+6)};$ Determine its transient response for unit step input and sketch the | 8 | 5 | 5 | | | b. | response. Evaluate the maximum overshoot and the corresponding peak time . Determine the stability of the system whose characteristics equation is given by $s^5 + s^4 + 2 \ s^3 + 2 \ s^2 + 11s + 10 = 0$ | 8 | 5 | 4 | | | K. | OR | | art Meyers | A years maken | | | a. | Sketch the root locus plot and determine the value of K if damping ratio is 0.707, for the system whose open loop transfer function is given by $G(s) H(s) = \frac{K}{s(s+4)}$ | 8 | 5 | 4 | | 11 | b. | Determine the range of K for stability of unity feedback system using Routh stability criterion whose transfer function $\frac{C(s)}{R(s)} = \frac{K}{s(s^2+s+1)(s+2)+K}$ | 8 | 5 | 4 |